INFRARED SPECTRA OF THE NO₃⁻ ANION IN NaClO₄, Na₂SO₄, NaClO₃, AND NaIO₃ HOST STRUCTURES

Bohumil HÁJEK, Alexander MUCK and Olga SMRČKOVÁ Department of Inorganic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received April 7th, 1987

The planar NO₃⁻ ion (own symmetry D_{3h}) was embedded in NaClO₄, Na₂SO₄, NaClO₃ and NaIO₃ host structures containing tetrahedral (T_d) or pyramidal (C_{3v}) anions, and its infrared spectra were interpreted in terms of group analysis of the crystal symmetry. Where the correlation is satisfied, viz. in NaClO₄, NaClO₃ and NaIO₃, the NO₃⁻ anion possesses the site symmetry of the host structure (C_{2v} , C_3 and C_s , respectively), whereas in Na₂SO₄ an additional symmetry lowering takes place ($D_2 \rightarrow C_2$).

The study of the site symmetry of an anion requires elimination of the mutual vibrational influencing of this species in the elementary cell. This can be achieved by embedding a small amount of a substance with this anion in a host structure with a different crystal structure. Spectral changes indicating symmetry lowering to the site symmetry of the host structure have been observed for substances where anions with the same own symmetries were substituted¹. In the present work, changes in the infrared spectra are examined for the NO₃⁻ anion (own symmetry D_{3h}) on its embedding in host structures containing anions with own symmetries T_d or C_{3v} .

EXPERIMENTAL

The salts used were of reagent grade purity. Mixtures of NaClO₄, Na₂SO₄, NaClO₃, and NaIO₃, respectively, with 5–10 mole % NaNO₃ were dissolved in distilled water and concentrated for crystallization, and the crystals obtained were filtered out and dried at room temperature. Samples of the NaClO₄-NaNO₃ system were heated at 150°C for approximately 3 h.

Infrared spectra of the samples in KBr disks (13 mm in diameter) were measured over the region of $4000-200 \text{ cm}^{-1}$ on a Perkin-Elmer 325 spectrophotometer.

RESULTS AND DISCUSSION

The basic crystallographic data of the starting substances used as the host structures were taken from refs²⁻⁵; these substances possess the orthorhombic D_{2h}^{16} (NaIO₃), D_{2h}^{17} (NaClO₄) and D_{2h}^{24} (Na₂SO₄) and the cubic T^4 (NaClO₃) structures. The own symmetries and site symmetries of the anions and the numbers of formula units in the elementary cells are given in Table I.

The NO₃ anion was introduced in the form of NaNO₃ which crystallizes² at room temperature in the space group D_{3d}^6 : $C_1(12)$, $D_3(2)$, $C_{3i}(2)$, $C_3(4)$, $C_i(6)$, $C_2(6)$. The number of formula units in the trigonal elementary cell is Z = 2. The own symmetry of the anion is D_{3h} ; its site symmetry in the salt is D_3 .

The six normal vibrations of the NO₃⁻ anion are distributed into the representations $A'_1 + A''_2 + 2E'$, the two last species being infrared-active. In the site group and factor group approximation, *i.e.*, in the correlation $D_{3h} \rightarrow D_3 \rightarrow D_{3d}$, the number of infrared-active vibrations remains unaltered $(A''_2 \rightarrow A_2 \rightarrow A_{2u}, E' \rightarrow E \rightarrow \rightarrow E_u)$.

The infrared spectrum of NaNO₃ exhibits the v_1 , v_2 , v_3 and v_4 vibrations⁶ at 1 068, 838, 1 395 and 727 cm⁻¹, respectively. The activity of the v_1 vibration disagrees with the theoretical group analysis; this can be explained in terms of a lowering of the site symmetry D_3 to the effective site symmetry C_3 caused by the T(E) and R(E) vibrations contained in the $2A + 2E(D_3)$ lattice vibrations of the anion. It should be noted that the site symmetry D_3 has been found⁷ at room temperature (and C_{3v} at -196° C) for the NO₃⁻ anion embedded in RbCl, RbBr, and RbI.

The Infrared Spectra of the Mixed Systems

The NaClO₄-NaNO₃ system. The NO₃⁻ anion in NaClO₄ with the site symmetry $C_{2\nu}$ exhibits vibrations $\nu_2 \sim 835$ and $\nu_3 \sim 1380$, 1365 cm⁻¹. The ν_1 vibration is obscured by the very strong ν_3 vibration of the ClO₄⁻ anion. The ν_4 vibration of the NO₃⁻ anion is generally very little marked, particularly at a high dilution of the substance (Fig. 1).

The observed splitting of the v_3 vibration disagrees with the $D_{3h} \rightarrow D_3 \rightarrow D_{3d}$ correlation. In view of the theoretically feasible relations between the D_{3h} symmetry of the anion, the site symmetry of the NaClO₄ host lattice^{3,4}, viz. D_{2h}^{17} : $C_1(16)$

Compound	Space group	Z	Own symmetry of anion	Site symmetry of anion	Site symmetry of NO_3^- anion
NaNO ₃	D _{3d} -R3C	2	D _{3h}	D ₃	D ₃
NaClO ₄	D_{2h}^{17} -Cmcm	4	T _d	C_{2v}	C_{2v}
Na_2SO_4	D_{2h}^{24} -Fddd	8	T _d	D_2	C_2
NaClO ₃	$T^{4}-P2_{1}3$	4	C _{3v}	C ₃	C ₃
NaIO ₃	D_{2h}^{16} -Pnma	4	C30	C _s	C _s

Crystallographic data of the host structures and the experimentally found site symmetries of the guest NO_3^- anion

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

TABLE I

 $2C_{2k}(4)$, $C_{2\nu}(4)$, $C_i(8)$, $C_2(8)$, $2C_s(8)$, and the observed vibrations, the infrared spectrum can be interpreted as exhibiting the $C_{2\nu}$ symmetry of the NO₃⁻ anion, in agreement with the group correlations (Table II); this symmetry is identical with the site

TABLE II

Correlation of the own symmetry of the NO₃ anion (D_{3h}) and the corresponding site-group

R) $A(IR)$ R) $2E(IR)$		
$\mathbf{R}) \qquad 2E(\mathbf{IR})$		
C _{2v}	$\rightarrow C_2 \longrightarrow$	C _s
	2v IR)	$\frac{1}{1}$ IR) $A(IR)$

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

symmetry of the ClO₄⁻ anion in the host structure (Table I). All of the A_1 , B_1 , and B_2 vibrations are infrared-active.

The Na₂SO₄-NaNO₃ system. In the host structure^{3,5} of Na₂SO₄, with the symmetry D_{2h}^{24} : $C_1(32)$, $2D_2(8)$, $2C_i(16)$, $3C_2(8)$, the site symmetry of the anion is D_2 . This group is not allowed by group theory for the NO₃⁻ anion in this lattice.

The infrared spectrum of the NO₃⁻ anion exhibits the active vibration $v_2 \sim 840 \text{ cm}^{-1}$ and the split degenerate vibration $v_3 \sim 1.385$, 1.355 sh cm⁻¹ (Fig. 1). Based on the correlation table, the spectrum of the NO₃⁻ anion can be interpreted in terms of symmetry lowering to C_2 , *i.e.*, the NO₃⁻ anion occupies the C_2 site.

The NaClO₃-NaNO₃ system. Substitution of the ClO₃⁻ anion in the host structure by the NO₃⁻ anion manifests itself in the spectrum by vibrations $v_1 \sim 1050$ sh, $v_2 \sim 835$, $v_3 \sim 1385$, 1370 sh cm⁻¹; the v_4 vibrations are overlapped (Fig. 2). The ClO₃⁻ anion in the NaClO₃ structure² (T^4 : $C_1(12)$, $C_3(4)$) exhibits the site symmetry C_3 . The spectral patterns of the guest NO₃⁻ anion give evidence of the C_3 symmetry for this anion, *i.e.*, the site symmetry of the host structure.

The NaIO₃-NaNO₃ system. The NO₃ anion in NaIO₃ exhibits vibrations $v_1 \sim 1065$, $v_2 \sim 845$, and $v_3 \sim 1385$, 1355 sh cm⁻¹. The NaIO₃ host structure with the symmetry D_{2h}^{16} : $C_1(8)$, $2C_i(4)$, $C_s(4)$ displays the site symmetry of the anion C_s . This site symmetry also satisfies the group correlations of the NO₃ anion. The infrared spectrum (Fig. 2) confirms the theoretical assumption that the NO₃ anion in this host structure possesses the site symmetry C_s ; hence, anion exchange is involved.

The observed site symmetries of the NO_3^- anion in the four host structures are summarized in Table I.

REFERENCES

- 1. Hájek B., Muck A., Smrčková O.: Collect. Czech. Chem. Commun. 50, 1147 (1985).
- 2. Wyckoff R. W. G.: Crystal Structures, Vol. II, pp. 359, 380, 389. Interscience, New York 1965.
- 3. Wyckoff R. W. G.: Crystal Structures, Vol. III, pp. 19, 109. Interscience, New York 1965.
- 4. Wartchow R., Berthold H. I.: Z. Kristallogr. 147, 307 (1978).
- 5. Hawthorne F. C., Ferguson R. B.: Can. Miner. 13, 181 (1975).
- 6. Ross S. D.: Inorganic Infrared and Raman Spectra, p. 145. McGraw-Hill, London 1972.
- 7. Mohammad M. R., Sherman W. F.: Spectrochim. Acta, A 40 763 (1984).

Translated by P. Adámek.